

SYDNEY BOYS HIGH MOORE PARK, SURRY HILLS

> December 2009 ASSESSMENT # 1 YEAR 11

Mathematics Extension

General Instructions:

- Reading time—5 minutes.
- Working time—90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Answer in simplest exact form unless otherwise stated.

Total marks—80 Marks

- Attempt ALL questions.
- The mark-value of each question is boxed in the right margin.
- Start each NEW question in a separate answer booklet.
- Hand in your answer booklets in 4 sections: Q1, Q2, Q3, and Q4.

Examiner: Mr D. Hespe

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Question 1 (20 marks)

(b) Solve the following for x: (i) 7 - 2x > 12,

(ii)
$$|3x-2| = 4$$
, 2

(iii)
$$x^{5/3} = 32,$$
 1

(iv)
$$\frac{1}{x} \ge \frac{1}{6}$$
.

(c) If x degrees is equal to X radians, find the value of $\frac{x}{X}$ to two decimal places.

(a) Express $\frac{2}{3x+6} + \frac{3x+2}{2x^2+x-6}$ as a simplified fraction.

- (d) If $\tan \frac{\theta}{2} = t$, express $\cot \theta$ in terms of t.
- (e) The normals to the parabola $x^2 = 4ay$ at the points $P(2at, at^2)$ and $Q(2as, as^2)$ meet at R.
 - (i) Find the coördinates of R in terms of s and t.
 - (ii) If st = -2, find the cartesian equation of the locus of R.
- (f) A curve is given parametrically by the equations $x = t^2$, $y = t^3$, where t is a parameter. Show that the tangent at the point with parameter t has the equation $2y - 3tx + t^3 = 0$.

 $\boxed{2}$

1

1

1

4

|3|

Question 2 (20 marks)

(Use a separate writing booklet.)

(a) P is the point $(\cos \alpha, \sin \alpha)$ and Q is the point $(\cos \beta, \sin \beta)$ on the circumference of the circle, centre the origin, radius 1. By writing down two different expressions for PQ^2 , deduce the result that

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$$

- (b) Factorise the expression $x^2 6x + 9$, and hence find any real solutions for $x^4 x^2 + 6x 9 = 0$.
- (c) The equation $\frac{5}{y^2} \frac{1}{2y} = 1$ is true when y = 2. Use this fact to find a solution of $\frac{5}{(2y+5)^2} - \frac{1}{2(2y+5)} = 1$.
- (d) Find the acute angle between the curves $y = x^2$ and y = 3 2x 3 at the point where they meet in the first quadrant. (Give your answer to the nearest degree.)
- (e) If α , β and γ are the roots of the equation $x^3 + 2x^2 + 3x + 4 = 0$, find the value of

(i)
$$(\alpha - 1)(\beta - 1)(\gamma - 1)$$
,

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
,

(iii)
$$\alpha^2 + \beta^2 + \gamma^2$$
.

- (f) (i) Find the value of n for which the division of $3x^n 7x^2 + 15$ by x 2 leaves a remainder of 11.
 - (ii) Given that $16x^4 4x^3 4b^2x^2 + 7bx + 18$ is divisible by 2x + b, show that $b^3 7b^2 + 36 = 0$.

|3|

|3|

|2|

3

1

1

|2|

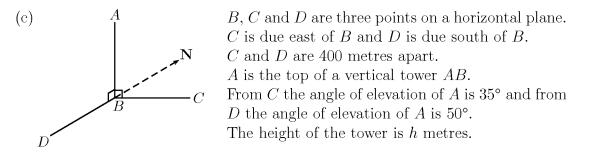
|2|

Question 3 (20 marks)

(Use a separate writing booklet.)

(a) The points P(-5, 1), A(a, -3) and B(-2, b) are such that P divides the interval AB externally in the ratio 4:1. Find the values of a and b.

(b) Solve
$$(x + \frac{1}{x})^2 + 6 = 5(x + \frac{1}{x})$$
 for x.



(i) Copy the diagram and mark on it the given distances and angles.

(ii) Show that
$$\frac{h^2}{\tan^2 50^\circ} + \frac{h^2}{\tan^2 35^\circ} = 400^2$$
. 2

- (iii) Find h, correct to one decimal place.
- (iv) Find the bearing of D from C to the nearest degree.

(d) (i) Find the set of values of x for which
$$\frac{x^2 - 12}{x} > 1$$
.

(ii) Deduce the set of values of x for which
$$\frac{x^2 - 12}{|x|} > 1.$$
 1

- (e) (i) For what values of x between 0 and 360 is $\cos x^{\circ} \sqrt{3} \sin x^{\circ}$ positive?
 - (ii) Find all values of ψ for which $\tan^2 \psi = \tan \psi$.

|3|

|3|

1

1

|2|

|3|

 $\boxed{2}$

|2|

Question 4 (20 marks)

(Use a separate writing booklet.)

 (a) Consider the curve expressed parametrically as x = t + 1, y = 2t² - 2. (i) Re-express this relationship in Cartesian form, <i>i.e.</i>, as y = f(x). 	1
(ii) Find its focus and directrix.	2
(iii) Derive the equation of the tangent at the point $A(x_1, y_1)$ on the curve.	2
(iv) Hence or otherwise, show that the chord of contact of the tangents from an external point $T(x_0, y_0)$ is $y + y_0 = 4(xx_0 - x - x_0)$.	4
(b) Find the general solution to $\tan p\theta = \cot q\theta$.	3
(c) Given that A, B and C are the angles of a triangle, (a) show that $\tan C = \frac{\tan A + \tan B}{\tan A \tan B - 1}$.	1
Given further that $\tan B = 3$ and that $\tan C = 2 \tan A$, (b) find the angle A without the use of a calculator.	3
(c) Find all integral solutions of the following simultaneous equations: $x^2 + y = 3 \dots \boxed{1}$	4

$x^{2} + y = 3...1$ $y^{2} + x = 5...2$

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

Note: $\ln x = \log_e x$, x > 0

Question 1 (20 marks)

(a) Express
$$\frac{2}{3x+6} + \frac{3x+2}{2x^2+x-6}$$
 as a simplified fraction.
Solution: $\frac{2}{3(x+2)} + \frac{3x+2}{(x+2)(2x-3)} = \frac{4x-6+9x+6}{3(x+2)(2x-3)}$

$$= \frac{13x}{3(x+2)(2x-3)}$$

(b) Solve the following for x:

(i)
$$7 - 2x > 12$$
,
Solution: $-2x > 5$,
 $x < -5/2$.

(ii) |3x - 2| = 4,

Solution:
$$3x - 2 = 4$$
, or $-3x + 2 = 4$,
 $3x = 6$, $-3x = 2$,
 $\therefore x = 2, -2/3$.

(iii) $x^{5/3} = 32$,

Solution: $x^{5/3} = 2^5,$ $x^{1/3} = 2,$ $\therefore x = 8.$

(iv)
$$\frac{1}{r} \ge \frac{1}{6}$$
.

Solution: Clearly x > 0, then multiplying both sides by 6x gives $6 \ge x$, so $0 < x \le 6$.

(c) If x degrees is equal to X radians, find the value of $\frac{x}{X}$ to two decimal places.

Solution: $x \text{ degrees} = x \times \frac{\pi}{180}$ radians, $x \times \frac{\pi}{180} = X,$ $\therefore \frac{x}{X} = \frac{180}{\pi},$ = 57.30.

(d) If $\tan \frac{\theta}{2} = t$, express $\cot \theta$ in terms of t.

Solution:
$$\cot \theta = \frac{1}{\tan \theta},$$

$$= \frac{1}{\frac{2t}{1-t^2}},$$
$$= \frac{1-t^2}{2t}.$$

 $\mathbf{2}$

1

2

1

2

- (e) The normals to the parabola $x^2 = 4ay$ at the points $P(2at, at^2)$ and $Q(2as, as^2)$ meet at R.
 - (i) Find the coördinates of R in terms of s and t.

Solution: $\frac{dy}{dx} = \frac{2x}{4a},$ $= \frac{x}{2a},$ = t at P and s at Q.Normal at $P: y - at^2 = -\frac{1}{t}(x - 2at),$ $yt - at^3 = 2at - x,$ $x + ty = at^3 + 2at \dots \boxed{1}$ Similarly, at $Q, x + sy = as^3 + 2as \dots \boxed{2}$ Solving simultaneously: $\boxed{1 - 2}: y(t - s) = a((t^3 - s^3) + 2(t - s)),$ $y = a(t^2 + st + s^2 + 2),$ sub. in $\boxed{1}: x = at^3 + 2at - at^3 - ast^2 - as^2t - 2at,$ = -ast(t + s). $\therefore R \text{ is } (-ast(t + s), a(t^2 + st + s^2 + 2)).$

(ii) If st = -2, find the cartesian equation of the locus of R.

Solution:
$$x = 2a(t+s),$$
 $y = a(t^2+s^2),$
 $t+s = \frac{x}{2a},$ $t^2+s^2 = \frac{y}{a},$
 $(t+s)^2 - 2ts = \frac{y}{a},$
 $\left(\frac{x}{2a}\right) + 4 = \frac{y}{a},$
 $4ay = x^2 + 16a^2.$

(f) A curve is given parametrically by the equations $x = t^2$, $y = t^3$, where t is a parameter. Show that the tangent at the point with parameter t has the equation $2y - 3tx + t^3 = 0$.

Solution:
$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt},$$

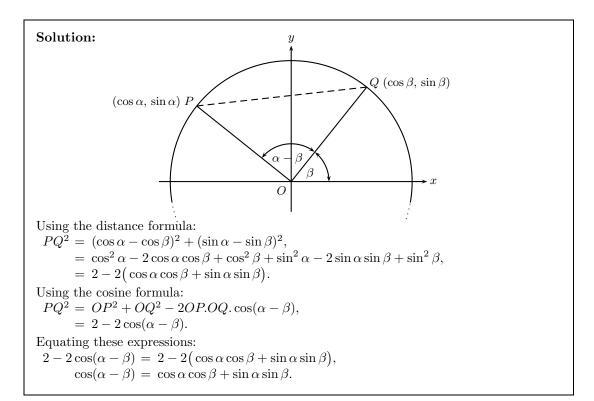
 $= \frac{3t^2}{2t},$
 $= \frac{3}{2}t.$
At the point with parameter t , the equation of the tangent is
 $y - t^3 = \frac{3}{2}t(x - t^2),$
 $2y - 2t^3 = 3tx - 3t^3,$
i.e. $2y - 3tx + t^3 = 0.$

3

4

Question 2 (20 marks)

(a) P is the point (cos α, sin α) and Q is the point (cos β, sin β) on the circumference of the circle, centre the origin, radius 1. By writing down two different expressions for PQ², deduce the result that



 $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta.$

(b) Factorise the expression $x^2 - 6x + 9$, and hence find any real solutions for $x^4 - x^2 + 6x - 9 = 0$.

Solution:

$$\begin{array}{ll}
x^2 - 6x + 9 &= (x - 3)^2, \\
\therefore x^4 - x^2 + 6x - 9 &= (x^2)^2 - (x - 3)^2, \\
&= (x^2 - x + 3)(x^2 + x - 3).
\end{array}$$
Now $x^2 - x + 3 = 0$ has no real solutions as the discriminant, $\triangle = 1 - 4 \times 3, \\
&< 0.$
However

$$\begin{array}{ll}
x^2 + x - 3 &= 0, \\
x^2 + x + \frac{1}{4} &= 3 + \frac{1}{4}, \\
&(x + \frac{1}{2})^2 &= \frac{13}{4}, \\
&x + \frac{1}{2} &= \pm \frac{\sqrt{13}}{2}, \\
&x &= \frac{-1 \pm \sqrt{13}}{2}.
\end{array}$$

3

(c) The equation $\frac{5}{y^2} - \frac{1}{2y} = 1$ is true when y = 2. Use this fact to find a solution of $\frac{5}{(2y+5)^2} - \frac{1}{2(2y+5)} = 1$.

Solution: 2y + 5 = 2, 2y = -3, y = -3/2.

(d) Find the acute angle between the curves $y = x^2$ and y = 3 - 2x at the point where they meet in the first quadrant. (Give your answer to the nearest degree.)

Solution: Solving simultaneously, $\begin{aligned}
x^2 &= 3 - 2x, \\
x^2 + 2x - 3 &= 0, \\
(x + 3)(x - 1) &= 0, \\
x &= -3, 1.
\end{aligned}$ So the intersection in the first quadrant is (1, 1). For $y = x^2$, $\frac{dy}{dx} = 2x = 2$ at the intersection. The slope of y = 3 - 2x is -2. $\tan(\operatorname{angle}) = \left| \frac{2 - 2}{1 + 2 \times - 2} \right|, \\
&= 4/3. \\
\therefore \operatorname{angle} = 53.13010235... \\
&\approx 53^{\circ}.
\end{aligned}$

(e) If α , β and γ are the roots of the equation $x^3 + 2x^2 + 3x + 4 = 0$, find the value of

(i)
$$(\alpha - 1)(\beta - 1)(\gamma - 1)$$
,

Solution: We note first that
$$\alpha + \beta + \gamma = -2$$
,
 $\alpha\beta + \alpha\gamma + \beta\gamma = 3$,
and $\alpha\beta\gamma = -4$.
Then $(\alpha - 1)(\beta - 1)(\gamma - 1) = \alpha\beta\gamma - (\alpha\beta + \alpha\gamma + \beta\gamma) + (\alpha + \beta + \gamma) - 1$,
 $= -4 - 3 - 2 - 1$,
 $= -10$.

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
,
Solution: $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \alpha\gamma + \beta\gamma}{\alpha\beta\gamma}$,
 $= -\frac{3}{4}$.

(iii) $\alpha^2 + \beta^2 + \gamma^2$.

Solution:

$$(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma),$$
So $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma),$

$$= (-2)^2 - 2 \times 3,$$

$$= -2.$$

3

3

1

(f) (i) Find the value of n for which the division of $3x^n - 7x^2 + 15$ by x - 2 leaves a remainder of 11.

Solution: Put $P(x) = 3x^n - 7x^2 + 15$, then $P(2) = 3 \times 2^n - 7 \times 4 + 15 = 11$, $3 \times 2^n = 24$, $2^n = 8$, $\therefore n = 3$.

(ii) Given that $16x^4 - 4x^3 - 4b^2x^2 + 7bx + 18$ is divisible by 2x + b, show that $b^3 - 7b^2 + 36 = 0$.

Solution: Put $P(x) = 16x^4 - 4x^3 - 4b^2x^2 + 7bx + 18$, then $P\left(-\frac{b}{2}\right) = 0 = \frac{16b^4}{16} + \frac{4b^3}{8} - 4b^2 \times \frac{b^2}{4} - \frac{7b^2}{2} + 18$, $= b^4 + \frac{b^3}{2} - b^4 - \frac{7b^2}{2} + 18$, $= \frac{b^3}{2} - \frac{7b^2}{2} + 18$, *i.e.* $b^3 - 7b^2 + 36 = 0$. $\mathbf{2}$

Question 3 (20 marks)

Г

(c)

D

(Use a separate writing booklet.)

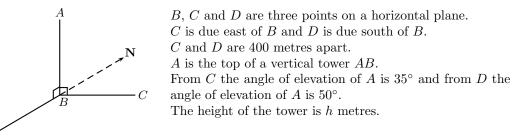
(a) The points P(-5, 1), A(a, -3) and B(-2, b) are such that P divides the interval AB externally in the ratio 4:1. Find the values of a and b.

Solution:
$$(-5, 1) = \left(\frac{-1 \times a + 4 \times -2}{-1 + 4}, \frac{-1 \times -3 + 4 \times b}{-1 + 4}, \right),$$

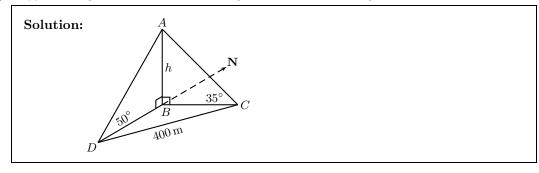
i.e. $-a - 8 = -15,$
 $a = 7,$
and $3 + 4b = 3,$
 $b = 0.$

(b) Solve
$$\left(x + \frac{1}{x}\right)^2 + 6 = 5\left(x + \frac{1}{x}\right)$$
 for x.

Solution: Put
$$y = (x + \frac{1}{x})$$
.
 $y^2 - 5y + 6 = 0$,
 $(y - 3)(y - 2) = 0$,
 $y = 2, 3$.
 $\therefore x + \frac{1}{x} = 2$, or $x + \frac{1}{x} = 3$,
 $x^2 - 2x + 1 = 0$, $x^2 - 3x + 1 = 0$,
 $(x - 1)^2 = 0$, $x = \frac{3 \pm \sqrt{5}}{2}$.



(i) Copy the diagram and mark on it the given distances and angles.



3

1

3

.../exams/2009/Year11/ExtYearly.tex

(ii) Show that
$$\frac{h^2}{\tan^2 50^\circ} + \frac{h^2}{\tan^2 35^\circ} = 400^2$$
.

Solution:
$$\tan 50^\circ = \frac{h}{DB}$$
, $\tan 35^\circ = \frac{h}{BC}$,
 $DB = \frac{h}{\tan 50^\circ}$. $BC = \frac{h}{\tan 35^\circ}$.
Now $DB^2 + BC^2 = 400^2$,
 $\therefore \frac{h^2}{\tan^2 50^\circ} + \frac{h^2}{\tan^2 35^\circ} = 400^2$.

(iii) Find h, correct to one decimal place.

Solution:
$$h^2 \left(\frac{1}{\tan^2 50^\circ} + \frac{1}{\tan^2 35^\circ} \right) = 400^2,$$

 $h^2 = 400^2 \times \left(\frac{\tan^2 50^\circ \tan^2 35^\circ}{\tan^2 50^\circ + \tan^2 35^\circ} \right),$
 $h \approx 400 \times \sqrt{0.36447201},$
 $h \approx 241.5 \,\mathrm{m}.$

(iv) Find the bearing of D from C to the nearest degree.

Solution:
$$\tan B\widehat{C}D = \frac{BD}{BC},$$

 $= \frac{h}{\tan 50^{\circ}} \div \frac{h}{\tan 35^{\circ}},$
 $\approx 0.58754389.$
 $\therefore B\widehat{C}D \approx 30.4361^{\circ}.$
So the bearing of D from C is 240°.

(d) (i) Find the set of values of x for which
$$\frac{x^2 - 12}{x} > 1$$
.

Solution:
$$\frac{x^2 - 12}{x^2 - 12 - x} > 0,$$
$$\frac{x^2 - 12 - x}{x} > 0,$$
$$\frac{(x - 4)(x + 3)}{x} > 0,$$
$$x(x - 4)(x + 3) > 0.$$
$$\xrightarrow{-3}{O} \qquad 4 \qquad x$$
$$\therefore -3 < x < 0, x > 4.$$

(ii) Deduce the set of values of x for which $\frac{x^2 - 12}{|x|} > 1.$

Solution: Clearly, when
$$-3 < x < 0$$
, $x^2 - 12 < 0$
 $\therefore |x| > 4$.

3

1

2

1

(e) (i) For what values of x between 0 and 360 is $\cos x^{\circ} - \sqrt{3} \sin x^{\circ}$ positive?

Solution:
$$r = \sqrt{1+3} = 2,$$

 $\alpha = \tan^{-1}\sqrt{3} = 60^{\circ},$
 $2\cos(x+60)^{\circ} > 0,$
 $\therefore 0 \le x < 30, 210 < x \le 360.$

(ii) Find all values of ψ for which $\tan^2 \psi = \tan \psi$.

Solution:
$$\tan \psi(\tan \psi - 1) = 0,$$

 $\tan \psi = 0 \text{ or } 1,$
 $\psi = n\pi \text{ or } n\pi + \frac{\pi}{4}.$

2

Question 4 (20 marks)

(Use a separate writing booklet.)

- (a) Consider the curve expressed parametrically as x = t + 1, $y = 2t^2 2$.
 - (i) Re-express this relationship in Cartesian form, *i.e.*, as y = f(x).

Solution:
$$t = x - 1,$$

 $y = 2(x - 1)^2 - 2,$
 $y = 2x^2 - 4x + 2 - 2,$
 $y = 2x^2 - 4x.$

(ii) Find its focus and directrix.

Solution: $y + 2 = 4 \times \frac{1}{2}(x-1)^2$. \therefore Vertex is at (1, -2) and focal length is $\frac{1}{2}$. Thus the focus is $(1, -1\frac{1}{2})$ and the directrix is the line $y = -2\frac{1}{2}$.

(iii) Derive the equation of the tangent at the point $A(x_1, y_1)$ on the curve.

Solution: $\frac{dy}{dx} = 4x - 4,$ = $4(x_1 - 1)$ at (x_1, y_1) . So the equation is $y - y_1 = 4(x_1 - 1)(x - x_1)$.

(iv) Hence or otherwise, show that the chord of contact of the tangents from an external point $T(x_0, y_0)$ is $y + y_0 = 4(xx_0 - x - x_0)$.

Solution: Similarly, the tangent at $B(x_2, y_2)$ is $y - y_2 = 4(x_2 - 1)(x - x_2)$, $y - y_2 = 4(xx_2 - x_2^2 - x + x_2)$, but (x_2, y_2) lies on the curve so $2x_2^2 = 2(2xx_2 - y_2 - 4x_2 - 2x + 2x_2)$ and $y - y_2 = 2(2xx_2 - y_2 - 4x_2 - 2x + 2x_2)$, $y = 4xx_2 - y_2 - 4x_2 - 4x$, $y + y_2 = 4(xx_2 - x_2 - x)$. Now as the point $T(x_0, y_0)$ lies at the intersection of both tangents, $y_0 + y_1 = 4(x_0x_1 - x_1 - x_0)$, $y_0 + y_2 = 4(x_0x_2 - x_2 - x_0)$. and as $A(x_1, y_1)$ and $B(x_2, y_2)$ both lie on the chord of contact, we deduce that $y_0 + y = 4(xx_0 - x - x_0)$, *i.e.* $y + y_0 = 4(xx_0 - x - x_0)$ is the desired equation.

(b) Find the general solution to $\tan p\theta = \cot q\theta$.

Solution:
$$\tan p\theta \times \tan q\theta = 1,$$
$$\frac{\sin p\theta}{\cos p\theta} \times \frac{\sin q\theta}{\cos q\theta} = 1,$$
$$\sin p\theta \sin q\theta = \cos p\theta \cos q\theta,$$
$$\cos p\theta \cos q\theta - \sin p\theta \sin q\theta = 0,$$
$$\cos(p+q)\theta = 0,$$
$$\cos(p+q)\theta = \cos \frac{(2n+1)\pi}{2}, n \in \mathbb{J},$$
$$(p+q)\theta = \frac{(2n+1)\pi}{2},$$
$$\therefore \theta = \frac{(2n+1)\pi}{2(p+q)}.$$

1

2

2

4

- (c) Given that A, B and C are the angles of a triangle,
 - (a) show that $\tan C = \frac{\tan A + \tan B}{\tan A \tan B 1}$

	$\tan A \tan D = 1$
Solution:	$\tan C = \tan(\pi - \overline{A + B}),$ = $-\tan(A + B),$ = $-\frac{\tan A + \tan B}{1 - \tan A \tan B},$ = $\frac{\tan A + \tan B}{\tan A + \tan B - 1}.$

Given further that $\tan B = 3$ and that $\tan C = 2 \tan A$, (b) find the angle A without the use of a calculator.

> Solution: $2 \tan A = \frac{\tan A + 3}{3 \tan A - 1}$. Put $\tan A = x$, then $2x = \frac{x+3}{3x-1}$, $6x^2 - 2x = x+3$, $6x^2 - 3x - 3 = 0$, $2x^2 - x - 1 = 0$, (2x+1)(x-1) = 0, $\therefore \tan A = 1 \text{ or } -\frac{1}{2}$. $\implies A = \frac{\pi}{4} \text{ or } A > \frac{\pi}{2}$, and $\tan C = -1$ so $C = \frac{3\pi}{4}$. But we can't have both A and C greater than $\frac{\pi}{2}$, so the only solution is $A = \frac{\pi}{4}$.

3

$$x^{2} + y = 3 \dots \boxed{1}$$
$$y^{2} + x = 5 \dots \boxed{2}$$

Solution: From 1: $y = 3 - x^2$. Sub. in 2: $(3 - x^2)^2 + x = 5$, $x^4 - 6x^2 + x + 4 = 0.$ Now, putting $P(x) = x^4 - 6x^2 + x + 4$, P(1) = 1 - 6 + 1 + 4 = 0.So (x-1) is a factor of P(x) and, using long division, So (x - 1) is a factor of P(x) and, using $\frac{x^3 + x^2 - 5x - 4}{x - 1}$ $\frac{x^4 - 6x^2 + x + 4}{x^3 - 6x^2}$ $\frac{-x^4 + x^3}{x^3 - 6x^2}$ $\frac{-x^3 + x^2}{-5x^2 + x}$ $\frac{5x^2 - 5x}{-4x + 4}$ 4x - 4or, for those who prefer Horner's scheme, $1 \quad 0 \quad -6 \quad 1 \quad 4$ 1 $\frac{4x-4}{0}$ Now, putting $Q(x) = x^3 + x^2 - 5x - 4$, $Q(1) = 1 + 1 - 5 - 4 \neq 0,$ $Q(-1) = -1 + 1 + 5 - 4 \neq 0,$ $Q(2) = 8 + 4 - 10 - 4 \neq 0,$ $Q(-2) = -8 + 4 + 10 - 4 \neq 0.$ So there are no more integral solutions. When x = 1, y = 2; so the only integral solution is (1, 2).

End of Paper